Permanently remove sensitive data
Sometimes, it is useful to transform directly the original dataset. You can do that with different methods:
These methods will destroy the original data. Use with care.
Applying masking rules
You can permanently apply the masking rules of a database with
anon.anonymize_database()
.
Let's use a basic example :
CREATE TABLE customer(
id SERIAL,
full_name TEXT,
birth DATE,
employer TEXT,
zipcode TEXT,
fk_shop INTEGER
);
INSERT INTO customer
VALUES
(911,'Chuck Norris','1940-03-10','Texas Rangers', '75001',12),
(312,'David Hasselhoff','1952-07-17','Baywatch', '90001',423)
;
SELECT * FROM customer;
id | full_name | birth | employer | zipcode | fk_shop
-----+------------------+------------+---------------+---------+---------
911 | Chuck Norris | 1940-03-10 | Texas Rangers | 75001 | 12
112 | David Hasselhoff | 1952-07-17 | Baywatch | 90001 | 423
Step 1: Load the extension :
CREATE EXTENSION IF NOT EXISTS anon CASCADE;
SELECT anon.init();
Step 2: Declare the masking rules
SECURITY LABEL FOR anon ON COLUMN customer.full_name
IS 'MASKED WITH FUNCTION anon.fake_first_name() || '' '' || anon.fake_last_name()';
SECURITY LABEL FOR anon ON COLUMN customer.employer
IS 'MASKED WITH FUNCTION anon.fake_company()';
SECURITY LABEL FOR anon ON COLUMN customer.zipcode
IS 'MASKED WITH FUNCTION anon.random_zip()';
Step 3: Replace authentic data in the masked columns :
SELECT anon.anonymize_database();
SELECT * FROM customer;
id | full_name | birth | employer | zipcode | fk_shop
-----+-------------+------------+---------------------+---------+---------
911 | jesse Kosel | 1940-03-10 | Marigold Properties | 62172 | 12
312 | leolin Bose | 1952-07-17 | Inventure | 20026 | 423
You can also use anonymize_table()
and anonymize_column()
to remove data from
a subset of the database :
SELECT anon.anonymize_table('customer');
SELECT anon.anonymize_column('customer','zipcode');
WARNING : Static masking is a slow process. The principle of static masking is to update all lines of all tables containing at least one masked column. This basically means that PostgreSQL will rewrite all the data on disk. Depending on the database size, the hardware and the instance config, it may be faster to export the anonymized data (See [Anonymous Dumps] ) and reload it into the database.
Shuffling
Shuffling mixes values within the same columns.
anon.shuffle_column(shuffle_table, shuffle_column, primary_key)
will rearrange all values in a given column. You need to provide a primary key of the table.
This is useful for foreign keys because referential integrity will be kept.
IMPORTANT: shuffle_column()
is not a masking function because it works
"verticaly" : it will modify all the values of a column at once.
Adding noise to a column
There are also some functions that can add noise on an entire column:
-
anon.add_noise_on_numeric_column(table, column, ratio)
if ratio = 0.33, all values of the column will be randomly shifted with a ratio of +/- 33% -
anon.add_noise_on_datetime_column(table, column, interval)
if interval = '2 days', all values of the column will be randomly shifted by +/- 2 days
IMPORTANT : These noise functions are vulnerable to a form of
repeat attack. See demo/noise_reduction_attack.sql
for more details.